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Abstract
A new model, based on an asymptotic procedure for solving the generalized
kinetic equations of electrons and phonons, is proposed, which gives naturally
the displaced Maxwellian at the leading order. The balance equations for the
electron number, total energy density and total momentum for the whole system
constitute now, together with Poisson equation, a system of four equations for
the electron chemical potential, the temperature of the system, the drift velocity
and the electric potential. In the drift–diffusion approximation the constitutive
laws are derived and the Onsager relations recovered.

PACS numbers: 63.20.kd, 41.20.Cv

1. Introduction

In semiconductor modeling three approaches are widely applied, according to the physical
situation we deal with. The microscopic approach is based on Monte Carlo simulations which
can account for as many aspects of semiconductor physics as we want. Nevertheless, it is well
known that these simulations are time consuming and therefore expensive.

The mesoscopic approach is based on the Boltzmann transport equation (BTE). Several
numerical techniques are developed in order to face a numerical solution of the problem. The
distribution function depends on seven variables (momentum, position, time) so that the task
is quite formidable.

The macroscopic approaches are based on the weak form of the BTE, which give rise to a
hierarchy of coupled equations for the moments of the distribution function. Such an approach
requires a truncation at some order based on closure assumptions for the higher order fluxes
and for the production terms for non-conservation equations.

Most of the semiconductor macroscopic models have in common the assumption, at the
basis of the closure approximation, that some higher moments can be calculated by utilizing a
displaced Maxwellian. This approach would be justified if one had a systematic approximation
for solving the Boltzmann transport equations, asymptotic with respect to some parameters
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whose leading terms would be displaced Maxwellians. As observed in [1], presently such an
approach does not seem to be available.

On the other hand, as pointed out in [2], fractal or power law distribution functions
are of interest in solid state physics. An example, given in [2], is the thermalization of a
non-equilibrium electron–phonon system. Only recently [3a–3d] a generalized kinetic theory
of electrons and phonons (GKTEP) has been proposed, which accounts for non-Gibbsian
statistics.

In the present paper we start from the generalized Bloch–Boltzmann–Peierls coupled
equations for the distribution functions of electrons and phonons.

After that, by means of an expansion of both the unknowns and the interaction kernels
with respect to a small parameter which accounts for the umklapp processes (with no
momentum conservation), the lowest order equations show that the displaced Maxwellian
approximation is justified. A closed set of equations for the chemical potential of electrons,
the temperature of the mixture and the drift velocity can be constructed, which recalls the
extended thermodynamics model [1].

In the drift–diffusion approximation the constitutive equations can be written and the
Onsager symmetry relations are recovered.

We stress that in the present model

(1) the displaced Maxwellian approximation is not an ad hoc assumption but is justified by
the expansion we apply;

(2) the statistics of both electrons and phonons is left general, in order to account for non-
standard cases;

(3) phonons are treated as a participating species, which brings energy and momentum;
(4) the correct phonon–phonon and electron–phonon interaction kernels are utilized: we

avoid the use of relaxation time approximations.

The most qualifying point is (3). In fact the usual assumption that the phonon field can
be treated as a fixed background is dropped here, since ‘any thermal gradient gives rise to
transport of heat by the phonons, whilst an electric current, though carried by electrons, cannot
fail to transfer some of its momentum to the lattice vibrations, and drag them along with it’
(Ziman). Finally we can say that the present model can be seen as a generalization of previous
ones like [4a, 4b], by means of the treatment of phonons.

2. The GKTEP equations

Consider two interacting populations: electrons (e), with charge -e, and phonons (p). Let
Ng(k, x, t) be the distribution function of phonons (quasi-momentum k, energy ωg(k)) of
type g (i.e. the branch g of the phonon spectrum) and np = np(p, x, t) the distribution function
of electrons (quasi-momentum p, energy Ep). By neglecting e–e interactions, the GKTEP
equations read

DgNg = (∂Ng/∂t)pp + (∂Ng/∂t)pe

Dpnp = (∂np/∂t)ep,

where

Dg = ∂/∂t + ug · ∂/∂x

Dp = ∂/∂t + v · ∂/∂x − eE · ∂/∂p

with

ug = ∂ωg/∂k, v = ∂Ep/∂p, E = −∂P/∂x,
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where P is the electric potential. Observe that, since ωg and Ep are even, ug and v are odd.
Introduce now the non-negative functions �, ψ and �, ϕ which represent the arrival and

departure state availability (models can be found in [3d]). Moreover, we set

�g = �(Ng(k)), �g = �(Ng(k)),

ϕp = ϕ(np), ψp = ψ(np).

In the non-generalized case

�(Ng) = 1 + Ng, �(Ng) = Ng,

ψ(np) = 1 − np, ϕ(np) = np.

On the right-hand side of the GKTEP equations for phonons [3a] we have

(∂Ng/∂t)pp =
∫ [

(1/2)
∑
g1g2

wpp(k1, k2 → k)(−�g�g1�g2 + �g�g1�g2)

+
∑
g1g3

wpp(k, k1 → k3)(�g�g1�g3 − �g�g1�g3)

]
dk1

8π3
,

where

k2 = k − k1 + b(k1, k2 → k), k3 = k + k1 + b(k, k1 → k3)

(b is an appropriate vector belonging to the reciprocal lattice), which account for three-phonon
processes:

(g, k) � (g1, k1) + (g2, k2), (g3, k3) � (g, k) + (g1, k1).

Moreover,

(∂Ng/∂t)pe = 2
∫

wpe(p → p′, k)(ϕpψp′�g − ψpϕp′�g)
dp

8π3
,

where p′ = p − k + b(p → p′, k) is the difference between the number of phonons k emitted
by electrons with any quasimomenta p and the number of phonons absorbed by electrons with
any p′.

For electrons we have

(∂np/∂t)ep =
∑

g

∫
wep(p′, k → p)(ϕp′ψp�g − ψp′ϕp�g)

+ wep(p′′ → p, k)(ϕp′′ψp�g − ϕpψp′′�g)]
dk

8π3
,

where

p′ = p − k + b(p′, k → p), p′′ = p + k + b(p′′ → p, k).

The first term corresponds to processes with emission of a phonon having quasimomentum
k by an electron having a given quasimomentum p and reverse processes. The second term
corresponds to processes with absorption of a phonon by an electron with quasimomentum p
and reverse processes.

The w’s are transition probabilities which account for energy conservation and satisfy the
following symmetry relations:

wpe(p → p′, k) = wep(p → p′, k) = wep(p′, k → p).

We consider now a system, exact but not closed, of three balance equations, to be utilized
later. By projecting the electron equation over 1 we have (electron conservation)

∂n

∂t
− (1/e)∇ · Je = 0,

3
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where the electron number density (n) and the electric current Je are given by

n = 2
∫

np
dp

8π3
, Je = −2e

∫
vnp

dp
8π3

. (1)

By projecting the electron equation over 2p and the phonon ones on k, summation gives the
following balance equation for momentum:

∂P
∂t

+ ∇ · FP = −eEn + 2
∫ (

∂np

∂t

)
ep

p dp
8π3

+
∑

g

∫ [(
∂Ng

∂t

)
pp

+
∫ (

∂Ng

∂t

)
pe

]
k dk
8π3

, (2)

where

P = 2
∫

np
p dp
8π3

+
∑

g

∫
Ng

k dk
8π3

FP = 2
∫

npv ⊗ p
dp

8π3
+

∑
g

∫
Ngug ⊗ k

dk
8π3

.

Finally, by projecting the electron equation over 2Ep and the phonon ones over ωg ,
summation gives the following balance equation for energy (energy conservation):

∂W

∂t
+ ∇ · FW = Je · E, (3)

where the energy density W and the energy flux FW are given by

W = 2
∫

Epnp
dp

8π3
+

∑
g

∫
ωgNg

dk
8π3

and

FW = 2
∫

vEpnp
dp

8π3
+

∑
g

∫
ugωgNg

dk
8π3

.

3. Asymptotic expansion and balance equations

By following Akhiezer and Peletminski [6] (see also [7]) we expand the kernels and the
unknowns with respect to a small parameter ε, which takes into account the effect of the
umklapp (U) processes in addition to the normal (N) ones (which conserve momentum). We
start with electrons (the extension to phonons is trivial). The sought expansions for np and Ng

read

np = nN
p + εnU

p , Ng = NN
g + εNU

g .

Accordingly (
∂np

∂t

)
ep

=
(

∂np

∂t

)N

ep

+ ε

(
∂np

∂t

)U

ep

.

The singular expansion for wep reads

wep = (1/ε)wN
ep + wU

ep,

so that we can write(
∂np

∂t

)N

ep

= (1/ε)

(
∂np

∂t

)NN

ep

+

(
∂np

∂t

)NU

ep

,(
∂np

∂t

)U

ep

= (1/ε)

(
∂np

∂t

)UN

ep

+

(
∂np

∂t

)UU

ep

.

4
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By collecting all these terms we have

Dp
(
nN

p + εnU
p

) = (1/ε)

(
∂np

∂t

)NN

ep

+

(
∂np

∂t

)NU

ep

+

(
∂np

∂t

)UN

ep

+ ε

(
∂np

∂t

)UU

ep

.

At the orders −1 and 0, we get(
∂np

∂t

)NN

ep

= 0(
∂np

∂t

)NU

ep

+

(
∂np

∂t

)UN

ep

= Dpn
N
p ,

respectively. Analogously for phonons(
∂Ng

∂t

)NN

pp

+

(
∂Ng

∂t

)NN

pe

= 0(
∂Ng

∂t

)NU

pp

+

(
∂Ng

∂t

)UN

pp

+

(
∂Ng

∂t

)NU

pe

+

(
∂Ng

∂t

)UN

pe

= DgN
N
g .

The equations of order −1 for both phonons and electrons are solved (see the appendix)
by

ln
(
�N

g

/
�N

g

) = (V · k − ωg)/T , ln
(
ϕN

p

/
ψN

p

) = (μ + V · p − Ep)/T ,

where T = T (x, t) is the absolute temperature of the mixture, μ = μ(x, t) is the chemical
potential of the electron gas and V = V(x, t) is the drift velocity of the mixture. Thus, at
the leading order of this expansion, we find the drifted (generalized) Bose–Einstein (BE) and
Fermi–Dirac (FD) distribution functions. Let us define the functions B and F as follows:

NN
g = B[β(ωg − V · k)], nN

p = F[β(Ep − μ − V · p)],

where β = 1/T . In the non-generalized case we have

B(ζ ) = 1/(eζ − 1), F(ζ ) = 1/(eζ + 1),

that is the BE and FD distribution functions are recovered. Usually [5] NN
g and nN

p are
factored into two components, a symmetric component (0) which is even in momentum and
an anti-symmetric component (1) which is odd:

NN
g = B(βωg) − βV · kB′(βωg) = N0

g + N1
g ,

nN
p = F[β(Ep − μ)] − βV · pF ′[β(Ep − μ)] = n0

p + n1
p.

This simplification is valid when the drift energy is small compared to the thermal energy [4].
Under this assumption, after some calculations we find

(∂Ng/∂t)NU
pp = βV ·

{∫ [
(1/2)

∑
g1g2

�0
g�

0
g1

�0
g2

wU
pp(k1, k2 → k)(k2 + k1 − k)

+
∑
g1g3

�0
g3

�0
g�

0
g1

wU
pp(k, k1 → k3)(−k3 + k1 + k)

]
dk1

8π3

}
,

(∂Ng/∂t)NU
pe = βV ·

{
2
∫

ψ0
p′ϕ

0
p�

0
g1

wU
pe(p → p′, k)(p − k − p′)

dp
8π3

}
and

(∂np/∂t)NU
ep = βV ·

{∑
g

∫
ψ0

pϕ0
p′�

0
gw

U
ep(p′, k → p)(k + p′ − p)

+ ψ0
pϕ0

p′�
0
gw

U
ep(p′ → p, k)(p′ − k − p)]

dk
8π3

}
.

5
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Since wU
rs = wrs − wN

rs , in the last three equations wU
rs can be substituted by wrs due to

momentum conservation for N-processes.
The equations of order 0 are the starting point of our macroscopic model. By projecting

the electron one over 1 the continuity equation for electrons reads
∂

∂t

∫
n0

p + ∇ ·
∫

vn1
p dp = 0. (4)

By projecting the electron equation over 2p and the phonon ones on k, summation gives the
following balance equation for momentum:
∂

∂t

(
2
∫

n1
pp dp +

∫
N1

g k dk
)

+ ∇ ·
(

2
∫

n0
pv ⊗ p dp +

∑
g

∫
N0

g ug ⊗ k dk
)

= −2eE
∫

n0
p dp + 2

∫ (
∂np

∂t

)NU

ep

p dp

+
∫ [∑

g

(
∂Ng

∂t

)NU

pp

+
∫ (

∂Ng

∂t

)NU

pe

]
k dk, (5)

where we took advantage of

2
∫ (

∂np

∂t

)UN

ep

p dp +
∑

g

∫ [(
∂Ng

∂t

)UN

pp

+
∫ (

∂Ng

∂t

)UN

pe

]
k dk = 0,

due to momentum conservation for N-processes.
Finally, by projecting the electron equation over 2Ep and the phonon ones over ωg ,

summation gives the following balance equation for energy:

∂

∂t

(
2
∫

Epn
0
p dp +

∑
g

∫
ωgN

0
g dk

)

+ ∇ ·
(

2
∫

vEpn
1
p dp +

∑
g

∫
ugωgN

1
g dk

)
= −2eE ·

∫
vn1

p dp. (6)

Equations (4)–(6) constitute now a closed set of equations for the unknowns μ, β, V
which recall the extended thermodynamical one [1].

4. Revised drift–diffusion approximation

In the drift–diffusion approximation we assume that the total momentum of the mixture does
not vary appreciably over the momentum relaxation time [5]. Then the momentum balance
equation reads

−2βR2 · ∇T − 2eR1 · E∗ − βR3 · ∇T = B · V, (7)

which gives V, where E∗ = E + (1/e)∇μ and

R1 =
∫

F ′[β(Ep − μ)]p ⊗ v dp

R2 =
∫

F ′[β(Ep − μ)](Ep − μ)p ⊗ v dp = M2 − μR1

R3 =
∑

g

∫
B′(βωg)ωgk ⊗ ug dk.

6
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The tensor B can be written in the following symmetric form:

B = −1

2

∑
g1g2g3

∫ ∫
�0

g2
�0

g3
�0

g1
wpp(k2, k3 → k1)(k1 − k2 − k3) ⊗ (k1 − k2 − k3)

dk1dk2

8π3

− 2
∑

g

∫ ∫
ϕ0

pψ
0
p′�

0
gwep(p → p′, k)(p − k − p′) ⊗ (p − k − p′)

dp dk
8π3

.

Since in the present approximation all the moments are calculated by means of drifted
(generalized) FD or BE distribution functions, the electrical (Je) and thermal (Ue, Up) currents
are given by [8]

Je = − e

4π3

∫
vnp dp = eβ

4π3

∫
vV · pF ′[β(Ep − μ)] dp

Ue = 1

4π3

∫
v(Ep − μ)np dp = − β

4π3

∫
vV · pF ′[β(Ep − μ)](Ep − μ) dp

Up = 1

8π3

∑
g

∫
ωgugNg dk = − β

8π3

∑
g

∫
ωgugV · kB′(βωg) dk.

By introducing V from equation (7) we obtain

Je = − eβ

4π3
[2eK11 · E∗ + β(2K12 + K13) · ∇T ]

Ue = β

4π3
[2eK21 · E∗ + β(2K22 + K23) · ∇T ]

Up = β

8π3
[2eK31 · E∗ + β(2K32 + K33) · ∇T ],

where Klm = R̃l · B
−1 · Rm (∼means transpose). The tensors Kh2 and Kh3 account for

the presence of electrons and phonons, respectively. Since B = B̃ the following Onsager
symmetry relation is in order:

Klm = K̃ml.

Consider now the electron number and energy balance equations (the momentum balance
equation has been already accounted for). By means of their definitions we can write

Je = H
11(μ, T ) · ∇(μ/e − P) + H

12(μ, T ) · ∇T

FW = H
21(μ, T ) · ∇(μ/e − P) + H

22(μ, T ) · ∇T ,

where

H
21 = β

4π3
(2M̃2 + R̃3) · B

−1 · R1, H
22 = β2

8π3
(2M̃2 + R̃3) · B

−1 · (2R2 + R3).

The balance equations now read

∂n

∂μ

∂μ

∂t
+

∂n

∂T

∂T

∂t
− 1

e

[
H 11

ij

∂2

∂xi∂xj

(
μ

e
− P

)
+ H 12

ij

∂2T

∂xi∂xj

+

(
∂H 11

ij

∂μ

∂μ

∂xi

+
∂H 11

ij

∂T

∂T

∂xi

)
∂

∂xj

(
μ

e
− P

)

+

(
∂H 12

ij

∂μ

∂μ

∂xi

+
∂H 12

ij

∂T

∂T

∂xi

)
∂T

∂xj

]
= 0,

7
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∂W

∂μ

∂μ

∂t
+

∂W

∂T

∂T

∂t
+ H 21

ij

∂2

∂xi∂xj

(
μ

e
− P

)
+ H 22

ij

∂2T

∂xi∂xj

+

(
∂H 21

ij

∂μ

∂μ

∂xi

+
∂H 21

ij

∂T

∂T

∂xi

)
∂

∂xj

(
μ

e
− P

)
+

(
∂H 22

ij

∂μ

∂μ

∂xi

+
∂H 22

ij

∂T

∂T

∂xi

)
∂T

∂xj

= − ∂P
∂xi

(
H 11

ij

∂

∂xj

(μ/e − P) + H 12
ij

∂T

∂xj

)
,

which together with the Poisson equation

∇ · (D · ∇P) = −e(ND − NA − n)

(D is the dielectric tensor, NA and NB are the number densities of acceptors and donors,
respectively) constitute a system of three PDEs for the three unknowns μ, T ,P whose
coefficients are expressed by means of integrals.

5. Conclusions

A new hydrodynamical model for the electron–phonon system has been proposed which is
certainly related to the extended thermodynamical one [1]. However, the treatment resorts
here strictly to kinetic theory so that the model is closed. This means that we do not need
adjustment of some free parameters (namely the relaxation times) by means of comparisons
with Monte Carlo calculations. A revised drift–diffusion approximation has been derived. An
obvious improvement with respect to the classical drift–diffusion model is constituted by the
introduction of an energy balance equation. The fulfilment of the symmetry Onsager relations
is not trivial, since it cannot taken for granted in many macroscopic models.

Observe that the asymptotic expansion we introduce is valid (ε � 1) when the room
temperature is much lower than the Debye temperature (in silicon, for example). A subject for
future works is the extension to a system which includes holes, in order to allow a numerical
treatment of silicon devices.

Appendix

Consider the equations at order −1:(
∂np

∂t

)NN

ep

= 0(
∂Ng

∂t

)NN

pp

+

(
∂Ng

∂t

)NN

pe

= 0.

By following the same approach as in [3a] it can be shown that these conditions are equivalent
to

�N
g �N

g1
�N

g2
= �N

g �N
g1

�N
g2

∀k, k1 (A.1)

ϕN
p ψN

p′ �
N
g = ϕN

p′ ψ
N
p �N

g ∀p, k. (A.2)

Condition (A.1) shows that ln
(
�N

g

/
�N

g

)
is a collisional invariant for phonons. In the case of

N-processes

ln
(
�N

g

/
�N

g

) = (V · k − ωg)/T . (A.3)

8
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By inserting (A.3) into (A.2) and taking into account that

p = p′ + k, Ep = Ep′ + ωg,

we find that ln
(
ϕN

p

/
ψN

p

)
+ (Ep − V · p)/T is a collisional invariant for electrons:

ln
(
ϕN

p /ψN
p

) = (−Ep + V · p + μ)/T .

Observe that at equilibrium, if the phonon distribution function is drifted, then the electron
distribution function is drifted with the same V.
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